As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译
A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].
translated by 谷歌翻译
Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsity and scene complexity. The conventional random masking paradigm used in 2D images often causes a high risk of ambiguity when recovering the masked region of 3D scenes. To this end, we propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points, effectively enhancing the pretext masking task for 3D scene understanding. Integrated with a progressive reconstruction manner, our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction. Besides, such scenes with progressive masking ratios can also serve to self-distill their intrinsic spatial consistency, requiring to learn the consistent representations from unmasked areas. By elegantly combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded. We conduct comprehensive experiments on a host of downstream tasks. The consistent improvement (e.g., +6.1 mAP@0.5 on object detection and +2.2% mIoU on semantic segmentation) demonstrates the superiority of our approach.
translated by 谷歌翻译
We present a method for introducing a text encoder into pre-trained end-to-end speech translation systems. It enhances the ability of adapting one modality (i.e., source-language speech) to another (i.e., source-language text). Thus, the speech translation model can learn from both unlabeled and labeled data, especially when the source-language text data is abundant. Beyond this, we present a denoising method to build a robust text encoder that can deal with both normal and noisy text data. Our system sets new state-of-the-arts on the MuST-C En-De, En-Fr, and LibriSpeech En-Fr tasks.
translated by 谷歌翻译
Effectively exploring the environment is a key challenge in reinforcement learning (RL). We address this challenge by defining a novel intrinsic reward based on a foundation model, such as contrastive language image pretraining (CLIP), which can encode a wealth of domain-independent semantic visual-language knowledge about the world. Specifically, our intrinsic reward is defined based on pre-trained CLIP embeddings without any fine-tuning or learning on the target RL task. We demonstrate that CLIP-based intrinsic rewards can drive exploration towards semantically meaningful states and outperform state-of-the-art methods in challenging sparse-reward procedurally-generated environments.
translated by 谷歌翻译
深度学习(DL)的快速增长和部署目睹了新兴的隐私和安全问题。为了减轻这些问题,已经讨论了安全的多方计算(MPC),以实现隐私保护DL计算。在实践中,它们通常是在很高的计算和沟通开销中,并有可能禁止其在大规模系统中的受欢迎程度。两种正交研究趋势吸引了人们对安全深度学习的能源效率的巨大兴趣,即MPC比较方案的高架降低和硬件加速度。但是,他们要么达到较低的减少比率,因此由于计算和通信节省有限而遭受了高潜伏期,或者是渴望的,因为现有的作品主要集中在CPU和GPU等一般计算平台上。在这项工作中,作为第一次尝试,我们通过将加密构件构建块的硬件延迟整合到DNN损耗功能中,以实现高能量效率,开发了一个系统的polympcnet,以减少MPC比较协议和硬件加速的联合额外降低的系统框架Polympcnet。和安全保证。我们的关键设计原理不是在DNN进行良好训练之后(通过删除或删除某些非物质操作员)训练(通过删除或删除某些非物质操作员)之后检查模型敏感性,而是要准确地执行DNN设计中的假设 - 培训DNN既是DNN都硬件有效且安全,同时逃脱了当地的最小值和鞍点并保持高精度。更具体地说,我们提出了通过多项式激活初始化方法直接提出的加密硬件友好的可训练多项式激活功能,以替代昂贵的2P-RELU操作员。我们开发了一个密码硬件调度程序和现场可编程门阵列(FPGA)平台的相应性能模型。
translated by 谷歌翻译
作为自动驾驶系统的核心部分,运动计划已受到学术界和行业的广泛关注。但是,由于非体力学动力学,尤其是在存在非结构化的环境和动态障碍的情况下,没有能够有效的轨迹计划解决方案能够为空间周期关节优化。为了弥合差距,我们提出了一种多功能和实时轨迹优化方法,该方法可以在任意约束下使用完整的车辆模型生成高质量的可行轨迹。通过利用类似汽车的机器人的差异平坦性能,我们使用平坦的输出来分析所有可行性约束,以简化轨迹计划问题。此外,通过全尺寸多边形实现避免障碍物,以产生较少的保守轨迹,并具有安全保证,尤其是在紧密约束的空间中。我们通过最先进的方法介绍了全面的基准测试,这证明了所提出的方法在效率和轨迹质量方面的重要性。现实世界实验验证了我们算法的实用性。我们将发布我们的代码作为开源软件包,目的是参考研究社区。
translated by 谷歌翻译
神经表面重建旨在基于多视图图像重建准确的3D表面。基于神经量的先前方法主要训练完全隐式的模型,它们需要单个场景的数小时培训。最近的努力探讨了明确的体积表示,该表示通过记住可学习的素网格中的重要信息,从而大大加快了优化过程。但是,这些基于体素的方法通常在重建细粒几何形状方面遇到困难。通过实证研究,我们发现高质量的表面重建取决于两个关键因素:构建相干形状的能力和颜色几何依赖性的精确建模。特别是,后者是准确重建细节的关键。受这些发现的启发,我们开发了Voxurf,这是一种基于体素的方法,用于有效,准确的神经表面重建,该方法由两个阶段组成:1)利用可学习的特征网格来构建颜色场并获得连贯的粗糙形状,并且2)使用双色网络来完善详细的几何形状,可捕获精确的颜色几何依赖性。我们进一步引入了层次几何特征,以启用跨体素的信息共享。我们的实验表明,Voxurf同时达到了高效率和高质量。在DTU基准测试中,与最先进的方法相比,Voxurf获得了更高的重建质量,训练的加速度为20倍。
translated by 谷歌翻译
恶意建筑提取已成为对深神经网络(DNN)安全性的关键关注。作为辩护,提议建筑混淆,以将受害者DNN改造为不同的建筑。尽管如此,我们观察到,只有提取混淆的DNN结构,对手仍然可以重新训练具有高性能(例如精度)的替代模型,从而使混淆技术无效。为了减轻这种探索不足的漏洞,我们提出了Obfunas,将DNN体系结构混淆转换为神经体系结构搜索(NAS)问题。 Obfunas结合使用具有功能的混淆策略,确保混淆的DNN体系结构只能达到比受害者更低的精度。我们使用NAS-Bench-101和NAS Bench-301(Nas-Bench-101和NAS-Bench-301)的开源架构数据集验证了Obfunas的性能。实验结果表明,在给定的Flops约束中,Obfunas可以成功地找到受害者模型的最佳掩码,导致对只有0.14倍FLOPS开销的攻击者的推理准确性降解高达2.6%。该代码可在以下网址获得:https://github.com/tongzhou0101/obfunas。
translated by 谷歌翻译